The first graph of the Mandelbrot set was achieved by Robert Brooks and Peter Matelski in 1978.
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
.
.
.
.
.
o o o o o o o o o o o O O O O O O O O @ @ @ @ @ . . . . @ @ @ @ @ @ O O O O O O O O O O O O O O O O O O O O O O O O O O O O O o o o o o o o o o o o o . . . . o o o o o o o o O O O O O O O @ @ @ @ @ @ . . o o @ @ O o . . @ @ @ @ @ @ @ @ O O O O O O O O O O O O O O O O O O O O O O O O O O O o o o o o o o o o o o . . o o o o o O O O O O O O @ @ @ @ @ @ @ . O @ O @ o O O O o . . . . @ @ @ @ @ @ @ @ @ O O O O O O O O O O O O O O O O O O O O O O O O O O O o o o o o o o o o . o o O O O O O O O O @ @ @ @ @ @ @ . . o O . O . o o @ O O o . . . . @ @ @ @ @ @ @ @ @ @ @ O O O O O O O O O O O O O O O O O O O O O O O O O O O o o o o o o o O O O O O O O O @ @ @ @ @ @ @ . . . o O @ @ o @ O @ O . @ O o . . . . . @ @ @ @ @ @ @ @ @ @ @ @ O O O O O O O O O O O O O O O O O O O O O O O O O O o o o o o O O O O O O O @ @ @ @ @ . . . . . o O . o . @ o . . . . . O O O o o . . . . @ @ @ @ @ @ @ @ @ @ @ @ O O O O O O O O O O O O O O O O O O O O O O O O O O o o o O O O O O @ @ @ @ . . . . . . o o O O o o . . . . . . . . @ @ O O O o o o o . . . @ @ @ @ @ @ @ @ @ @ @ O O O O O O O O O O O O O O O O O O O O O O O O O O o O O O O @ @ @ . . o o o o o o O O @ @ o O . . . . . . . . O o . @ O O O O O O O o o . . @ @ @ @ @ @ @ @ @ @ @ O O O O O O O O O O O O O O O O O O O O O O O O O O O @ @ . o O . @ O O O @ . o . @ . O . O o . . . . . o @ . . @ . o . o @ . . @ @ O o . . . . . @ @ @ @ @ @ @ @ O O O O O O O O O O O O O O O O O O O O O O O O @ @ . . @ O O o O . @ O . @ . . . . . . . . . . . . . . . . . . . @ . . . @ @ @ O o o o . . . . . . . . @ @ @ @ @ @ O O O O O O O O O O O O O O O O O O O O @ @ @ . . o . @ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . o . @ O o o o o . . . . . . . . . . . @ @ @ @ O O O O O O O O O O O O O O O O O @ @ . . o o O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O O @ @ @ O o o o o . . . . . . . . . . . . . @ @ @ O O O O O O O O O O O O O @ @ @ . o O @ . O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O . @ O O O O O o o o o o o o o o o O . O o . @ @ @ @ @ @ O O O O O O O @ @ @ . O . @ . o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . o O o . @ @ @ O O O @ . o O @ @ O @ . o o . o o . . . @ @ @ @ @ @ @ @ O O @ @ @ . o @ o @ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . o O O o . . o O @ . . O . O o @ O @ O . @ O o . . . . . . @ @ @ @ @ @ @ @ @ @ . o o . o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . o @ @ o . O . . . . . . . . . @ O . @ O O o . . . . . . . @ @ @ @ @ @ @ @ . . O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O @ . . . . . . . . . . . . . o o @ o @ @ @ O o . . . . . . . @ @ @ @ @ @ . . o O O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O . . . . . . . . . . . . . . . . @ @ @ O @ @ @ O O o o o o o . . @ @ @ @ . . o o O o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . @ @ . . O O O O o o o O O @ @ @ . . o o O @ . @ @ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . @ @ @ . . o o O o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . @ @ . . O O O O o o o O O @ @ @ . . o O O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O . . . . . . . . . . . . . . . . @ @ @ O @ @ @ O O o o o o o . . @ @ @ @ . . O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O @ . . . . . . . . . . . . . o o @ o @ @ @ O o . . . . . . . @ @ @ @ @ @ . o o . o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . o @ @ o . O . . . . . . . . . @ O . @ O O o . . . . . . . @ @ @ @ @ @ @ @ . o @ o @ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . o O O o . . o O @ . . O . O o @ O @ O . @ O o . . . . . . @ @ @ @ @ @ @ @ @ @ . O . @ . o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . o O o . @ @ @ O O O @ . o O @ @ O @ . o o . o o . . . @ @ @ @ @ @ @ @ O O @ @ @ . o O @ . O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O . @ O O O O O o o o o o o o o o o O . O o . @ @ @ @ @ @ O O O O O O O O @ @ . . o o O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O O @ @ @ O o o o o . . . . . . . . . . . . . @ @ @ O O O O O O O O O O O O O O @ @ @ . . o . @ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . o . @ O o o o o . . . . . . . . . . . @ @ @ @ O O O O O O O O O O O O O O O O O O @ @ . . @ O O o O . @ O . @ . . . . . . . . . . . . . . . . . . . @ . . . @ @ @ O o o o . . . . . . . . @ @ @ @ @ @ O O O O O O O O O O O O O O O O O O O O O O @ @ . o O . @ O O O @ . o . @ . O . O o . . . . . o @ . . @ . o . o @ . . @ @ O o . . . . . @ @ @ @ @ @ @ @ O O O O O O O O O O O O O O O O O O O O O O O O O O @ @ @ . . o o o o o o O O @ @ o O . . . . . . . . O o . @ O O O O O O O o o . . @ @ @ @ @ @ @ @ @ @ @ O O O O O O O O O O O O O O O O O O O O O O O O O O O O O @ @ @ @ . . . . . . o o O O o o . . . . . . . . @ @ O O O o o o o . . . @ @ @ @ @ @ @ @ @ @ @ O O O O O O O O O O O O O O O O O O O O O O O O O O o O O O O O O O @ @ @ @ @ . . . . . o O . o . @ o . . . . . O O O o o . . . . @ @ @ @ @ @ @ @ @ @ @ @ O O O O O O O O O O O O O O O O O O O O O O O O O O o o o O O O O O O O O @ @ @ @ @ @ @ . . . o O @ @ o @ O @ O . @ O o . . . . . @ @ @ @ @ @ @ @ @ @ @ @ O O O O O O O O O O O O O O O O O O O O O O O O O O o o o o o o o O O O O O O O O @ @ @ @ @ @ @ . . o O . O . o o @ O O o . . . . @ @ @ @ @ @ @ @ @ @ @ O O O O O O O O O O O O O O O O O O O O O O O O O O O o o o o o o o o o o o o O O O O O O O @ @ @ @ @ @ @ . O @ O @ o O O O o . . . . @ @ @ @ @ @ @ @ @ O O O O O O O O O O O O O O O O O O O O O O O O O O O o o o o o o o o o . o o o o o o o o O O O O O O O @ @ @ @ @ @ . . o o @ @ O o . . @ @ @ @ @ @ @ @ O O O O O O O O O O O O O O O O O O O O O O O O O O O o o o o o o o o o o o . . o o o o o o o o o o o O O O O O O O O @ @ @ @ @ . . . . @ @ @ @ @ @ O O O O O O O O O O O O O O O O O O O O O O O O O O O O O o o o o o o o o o o o o . . . . |
imagCount:40realCount:3160arggCount:46569 |
The Mandelbrot set is the set of values of c in the complex plane for which the orbit of 0 under iteration of the complex quadratic polynomial z*n+1 = z*n2 + c remains
bounded. That is, a complex number, c, is part of the Mandelbrot set if, when starting with z*0 = 0 and applying the iteration repeatedly, the absolute value of z*n
never exceeds a certain number (that number depends on c) however large n gets.